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ABSTRACT

The METCAN (METal matrix Composite ANalyzer) computer code and

its underlining theory, including the Multi-Factor Interaction

(MFI) equation, were examined for time-dependent response of

metal matrix composites (MMC). This study concentrated on

modeling time effects for fiber and matrix material properties,

particularly for the modulus, and the respective creep response
due to thermomechanical loading. The four main concepts

addressed were, one, modeling of the three basic stages of creep,

two, implementation of the modified MFI equation, three,

characterization of in-situ material properties, and four,

numerical methods for simulating viscoelastic creep. The

difficulty of experimentally obtaining the numerous in-situ

material properties for use in METCAN is discussed and two

possible alternatives are presented.
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INTRODUCTION

The METCAN computer program was developed at the NASA-Lewls

Research Center to simulate the response of metal matrix composites

(ME) due to various effects such as temperature, stress, stress rate,

temperature rate, fiber/matrix reaction, mechanical cycllnE, thermal

cycling, and time. METCAN uses the MFI equation to model the in-situ

materlal properties of both the fiber and matrix, such as their

st Iffness, coeff ic ient of thermal expans ion, and strength. The

constants in the MFI equation must be determined experimentally. These

models are then used in conjunction with various micromechanlc equations

developed by Chamis, et al [I], to predict the stress and strain of any

general laminate constructed form the modeled fiber and matrix material.

The objective of the program Is to be able to computationally simulate

the response of a product made from MMC by knowing Just the basic fiber

and matrix in-situ material propertles.

Up untll now the program has not been used for tlme dependent

response even though the basic material model, the mult i-factor

interaction {MFI) equation, does Include a tlme term. METCAN has been

successful In simulating thermomechanlcal response for single load

applications. The purpose of this study Is to further investigate time

effects In MMC and how to use METCAN to predict those effects. This

Includes InvestIE-atlng the basic MFI equation, presentlng modification

to the MFI equation, examlnlng the numerical methods in METCAN and
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developlnE new numerical procedures to incorporate time effects, such as

creep. It should be noted that plasticity is not Included In this study

even through it is important to the general response of a MMC at high

temperatures. It was felt that time effects should first be studied

alone, and fully understood before a vlscoplastlc theory is introduced.

This study can be divided Into four basic areas. The first area Is

the examination of the basic MFI equation that is used In METCAN.

Currently the MFI equation, as proposed by Chamls, et al [I], has only

one time term which limits its ability to describe all three stages of

creep for a metal matrix composite material. An additional time term is

proposed to allow modeling of primary and secondary creep. Furthermore,

the new tlme term Incorporates nonlinear temperature and stress effects

on the creep rate.

The second area covered in this report, is the actual

implementation of the new time term mentioned above into the METCAN

code. The modified program is tested on various laminates at several

stress and temperature levels. Numerical stability problems that

develop for various cases are examined and a new solution method, the

Newton-Raphson, is examined as a possible alternative.

The third area deals with the characterization difficulties of

in-situ material properties. The MFI equation requires the fiber,

matrix and the interface between the fiber and matrix to be modeled and

characterized separately, and then used in micromechanics equations to

generate lamina properties. Difficulties in obtainin E In-situ material

properties, such as experimental limitations and the large number of

6



constants, are discussed. Two possible alternatives, characterization

of the orthotroplc unidirectional lamina and the use of bulk material

properties, are presented.

The last area of research in this study deals with the numerical

solution methods currently used in METCAN to calculate the

tlme-dependent response, or creep, of a metal matrix composite. METCAN

uses the current values of properties to obtain the response of a metal

matrix composite under golng thermomechanlcal loading. Classical

viscoelastic theory is presently not available in METCAN. As a direct

consequence, METCAN results deviate from the closed form solution of a

simple three parameter spring and dashpot model. A new numerical

solution method which uses the hereditary concept of

previous stress history effects the current creep strain,

as a possible alternative METCAN. This method also uses the free creep

strains, similar to free thermal strains, to determine the correct load

shifting between the compliant matrix and the stiff fibers due to the

mismatch of creep strain.

creep, i.e.

is presented
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THEMULTI-FACTORINTERACTIONEQUATIONIN METCAN

The MFI equation was developed by Chamls, et al, [I] in an effort

to include all possible effects on all material properties. The current

form of the MFI equation models the effects of temperature, stress,

stress rate, temperature rate, fiber/matrix layer, mechanical cycling,

therm_l cycling, and time for the matrix, fiber and interface material.

The general form of the MFI equation is

P _ [TF -TP T-T
O F o

• J'oSF- % SF- % TF-
-- ] n ....

R F R

R F Re

f- ]q
Nm:. NM

Nm:. NMo _ ]rNTF NT

N NTo

t- t
F

t- t
F o

(1)

where P = A particular material property

T = temperature

S,_ = strength of stress

= temperature rate

= stress rate

R = interface layer reaction or growth

N = cycles

t = time

and subscripts, F = final or maximum property

o = initial property

M = mechanical

T = thermal
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The MFI equation is used to model the cha_ngtng material properties such

as stiffness, strength, thermal conductivity, coefficient of thermal

expaz_slon, etc. Each material property modeled, does not necessarily

use all terms. For instance, the coefficient of thermal expansion is

effected little, if any, by the current stress state, however, the

stiffness and strength properties are effected by all terms listed above

plus possible other effects.

The MFI equation has been used by Chamls, et al, [2,3] to model the

temperature and stress effects, and more recently, to model the cyclic

loading effects [4]. One of the advantages of the general MFI equation

is its modular form which allows adding or deleting terms that are

pertinent to the material property under discussion.

In order to better understand the effects of time in the MFI

equation, the stiffness property, E, will be used exclusively due to its

high dependence on time at elevated temperature. The HFI equation is

also simplified to include only temperature, stress and time effects

which allows ea.sier presentation of new concepts and ideas.

Furthermore, only time, temperature and stress effects have been

examined in detail in the literature which limits the experimental

verification to only those effects. The simplified MFI equation for

stiffness becomes

n

I ]'E _ TF

E T-T
o F o

-][-SF _ m t F t

S F _ t - to F o
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This basic equation models the stiffness of the fiber, matrix and

interface in each of the possible directions, such as radial,

transverse, shear or fiber directions. However, each direction (radial,

transverse,shear, etc} and material (fiber, matrix, etc) should have

different materlal constants, such as n, tF, s, _'o etc. Even in this

slmpllfled form, the enormous number of material constants needed to

completely model a composite becomes evident. This section will look

primarily at the generic form of Eq. 2 for the stiffness, E, without

regard to the direction or material since this general case must be

understood and verified before being applied to specific directions and

materials.

Baslc Form of the Time Term in the MFI Equation

Each of the three terms in Eq. 2 decay as the governing parameter,

T, v or t, gets larger. This type of function will be referred to as a

decay function. If each of the terms were plotted verses the their

respective governlng parameter, i.e. stress, temperature, or time, the

form of the graphic would be identical. The general form of the decay

function, for an exponent between 0 and I, reduces slowly at first and

then decreases rapidly towards the end, as shown in FiE. I. The rate in

which the function decays is governed by the value of the exponent.

Many material properties do exhibit changes similar to decay function,

especially for exponent values between 0.5 and 0. I. A good example of

this is the effect temperature has on stiffness. At low and moderate

temperatures there is only a silght reduction in stiffness but at high
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temperatures there is a very strong reduction in stiffness, even for

small temperature changes, until the meltinE temperature is reached,

where the stiffness essentially becomes zero.

Similar to temperature, most materials have a reduction in

stiffness with increasing stress, especially at hiEh stress levels. The

decay function for stress in the MFI equation models this effect well if

the exponent is small (0.2 > m > 0.05). For a stiffeninE material, a

small neEitlve exponent could be used.

While the stress and temperature terms in the M]=I equation are

important, the purpose of this study is to examine the time term and

thus, the remainder of this report will concentrate on the time effects.

Similar to the stress and temperature effects, the time term is also

modeled as a decay function. The time effects are evident in any

metallic materials at hiEh temperature, and are Eenerally referred to as

creep. Creep in metals has three phases; initial, primary and final.

The initial phase exhibits a rapid increase in strain but the strain

rate is actually decreasinE. A strain verses time plot in loE-lo g form

would be linea_'. In the primary or steady state phase the strain rate

is constant. This phase is Eenerally the ionEest and has the larEest

impact on the total stain of the material. The final phase shows a

IncreasinE strain rate and occurs Just before failure.

The current form of the decay function for time,

[(tF- t)/(t F- to)]s, can be simplified to [(t F- t)/tF]s if to, the

initial time, is assumed to be zero. The reduction in stiffness and the

associated chanEe in strain is plotted for various exponent values in
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Fig. 2 (tw is assumed to be I00 in all cases). In examination of the

strain curves, it becomes evident that this function can model only the

final creep phase where the strain rate is increasing rapidly. A major

deficlency is the lack of a constant strain rate (or constant slope) at

any point of the strain curve.

It could be argued that if the exponent is small, then the curve

will be relatively flat and could mode] the constant strain rate or

secondary phase of creep. The drawback in using a small exponent is

that the slope or- strain rate of the flat portion of the strain curve

will be very small or" in other" words, the curve is horizontal and thus

no creep. A small exponent can not accurately describe moder,ate or, high

constant strain rates without changing the tF parameter. A large t F .

will allow the relatively flat portion to be nonhorizontal, but now the

meaning of tF has changed; it is no longer" the time to failure. Even if

t is used as a variable to model the stiffness reduction, a constantF

creep rate can not be maintained for` an indefinite per'iod of time. This

problem is visually shown in Fig 3 wher,e t is allowed to vary when the
F

exponent's' is held constant.

Another example of the inability of the decay function to model

cr,eep Is the results of METCAN itself. Figure 4 shows the results of a

uniaxial lamina exposed to temper'ature and axial loading simultaneously.

The steady state cr-eep is not pr'esent and the final phase is much larger

than actual metal matrix composite material r,esponse [5,6].
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Computer Simulation Usln_ METCANfor Kevlar/Epoxy

To illustrate the difficulties of the MFI equation of not being

able to model the primary creep region of a material, METCAN was used to

predict the creep strain of a composite constructed from Kevlar 49

fibers and Flberlte 7714A epoxy. These prediction are then compared to

actual creep data for a [0/0] laminate. The reason for using a

Kevlar/Epoxy system Is that experimental data for both the fiber, matrix

and laminate are available [7] at various stress and temperature levels

to confirm METCAN results.

The normalized creep curve for the Kevlar fibers is shown in Fig. S

alon E with two fitted MFI equation curves. In an effort to keep the

modeling simple, the stress and temperature effects were not included.

Note that the normalized compliance curve was used for curve fitting

since only the exponent, s and variable, tF, need to be fitted. The

actual elastic properties of both the Kevlar fibers and matrix can be

obtained from handbooks. The best fit for t was 22,000 when s = 0.25,
F

and t = 40,000 when s = 0.5. Two curves were fitted, each with a
F

different exponent, to identify a possible exponent effect.

The MFI equation does not model the actual creep data for fibers

well because the basic form of the MFI equation requires the creep rate

to be always increasing which is the exact opposite for Kevlar fibers.

The actual data for creep compliance for Kevlar fibers follow a power

law, D(t) = a + bt 0"°4, where a and b are material constants and 0.04 is

the time exponent. The exponent is the most critical variable in a
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power law equation and 0.04 for Kevlar fibers has been Independently

confirmed by Ho, et al. [8].

Similar to the fibers, the creep compliance for the epoxy also

follows a power law, D(t) = a + bt °'s71. The MFI equation is fitted to

the epoxy creep curve in Fig. 6 with an exponent of s = 0.5 and

t F = 40,000. Like the fiber equation, the matrix does not fit the decay

function because of the basic differences of the HFI and power law

equat i ors.

The fitted HFI equation material parameters were used in METCAN to

predict a [0/0] laminate creep response with a constant load. The

results are shown in Fig. 7. As would be expected, the agreement

between actual and NETCAN predlcted strain is poor since the decay

function can not model a decreasing creep rate. It is also interesting

to note that the change in exponent and t for the fiber had little
F

effect on the total strain.

In conclusion, Kevlar/epoxy composites should not be modeled by the

current NFI equation. In order to accurately predict the creep of

polymer based composites, the basic material model needs to be able to

describe a decreasing creep rate.

Modification of the HFI Equation to Include Prlmary and Secondary Creep

The most common and simplest method to model creep of a metallic

material is to use a linear line to approximate the strain and time

relationship such as
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e=_: +at
0

where ¢ = total stain

c = elastic or initlal strain
O

a = constant creep rate

t = time

C3)

This function is a linear llne when plotting strain verses time, which

models the steady state or secondary creep stage exactly. The

associated stiffness reduction is

E o

E e+at
0 0

C43

or if e is assumed to be unity then
0

E I

E I +at
0

(s)

Both the stain and stiffness are plotted verses time In Fig. 8. The

disadvantaEe of this model is its inability to model the initial and

final phases. Equation 5 can also be derived from the decay function.

The basic decay function, [(t F- t}/tF]S, can be written as [I- t/tF]_

by substituting s = -I and a = -I/t F, the decay function becomes Eq. 5.

There is no physical meaning for a -I exponent but the 'a' constant

represents the steady state creep rate.

There have been extensions to Eq. 5 to include the initial creep

strain (the primary creep reElon} such as the Andrade's law [9] which
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can be written in modified form as

E I
m

E
o 1 + _t 11s + at

ce)

where _ is an additional variable that is determined experimentally.

The t I/3 term has its greatest effect at the initial time period which

allows it to model the primary creep phase accurately. The t term

becomes dominant at larger times, allowing it to model the secondary

creep phase. By using both time terms in the same equation, both the

first and secondary creep phases can be model.

The basic decay function, along with the constant creep model, Eq.

5, and the Andrade's model, Eq. 6, are compared to a hypothetical creep

curve in Fig. 9. In fitting the decay function model, both the t and s
F

parameters were allowed to vary to obtain the best fit. The a and

parameters were fitted for the best constant creep model and for the

Andrade's model. The Andrade's model fits the hypothetical creep well

for the first and second creep stages but poorly for the third stage.

As expected, the linear region matches exactly for the constant creep

phase but can not model the first and third creep phases.

On the other hand, the decay model is low at the beginning but does

increase rapidly towards the failure time to match the actual creep.

However, the decay model will blow up, l.e. increase without bound, if

the time is increased only slightly. Obtaining accurate experimental

results for the modeling of the final phase is extremely important, but

results in the final phases are the least predictable and reliable. In
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fact most models will not try to model the final phase because of the

unreliable and scatter of experimental results. Also note that the

decay model uses 2 parameters to fit the model whereas the linear model

requires only one, the steady state strain rate. Furthermore, most data

In the literature only reports the steady state rate and therefore

precludes using models that require knowledge of the initial or final

phases.

In order to model all three phases it is recommended that both the

decay function and Andrade's model be used together by multiplying the

two functions together. The modified MFI equation would become

E _ TF
T

E T-T
0 Y 0

n SF m

S F o-
0

t_t]s[ 1 ]tr- t _tI/3+o I+ at

C7)

Figure 10 demonstrates the ability of the modified MFI equation to model

all three creep phases by varying the variables tF, S, 8, and a.

Furthermore, if one of the creep phases is nonexistent for a particular

materials, the appropriate variable can simply be set to zero. For

instance, if there is no primary creep phase, _ is simply set to zero.

The flexibility of Eq. 7 does require four variables to be determined

experimentally verses the oriEinal two in the decay function.

The followinE section will develop the temperature and stress

dependency on creep rate and how it can be modeled. Actual

implementation of the the modified MFI equation into METCAN will not be

presented until later sections.
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Stress and Temperature Dependency on the Creep Rate

It is well known that stress and temperature greatly effect the

creep and creep rate of materials, especially metals. Furthermore, the

interaction between these effects can be highly nonlinear. The original

equation attempts to model this interaction by multiplying the

respective decay functions together, Eq. 2. The MFI equation does not

allow any of the constants, such as tF, or exponents to vary with time,

stress, or temperature. Certain nonlinear characteristics can be model

by multiplication of the terms but not all. To illustrate this point

an example will be presented and discussed. For simplicity, only the

stress and time parameters will be used in this example. The MFI

equation becomes

I B

E _ Sr

E S-
o F 0

C83

where t is assumed zero. Also, assume that _ = O, S = 100 MSI, t =
o o F F

I00 rain, E = I MS1, m = 0.5, and s = 0.5.
0

Since this is just a

numerical experiment, any acceptable value could be used. Substituting

these assumed values into Eq. 8 gives

E.[,oo ]os[,oot osloo Yo_ (9)

This equation requires the stiffness to go to zero in 100 mln regardless

of stress level or stress history (except when v = I00 MSI since the
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stiffness is already zero). This is not reasonable since a material

exposed to a stress of 20 MSI for 20 minutes and then no stress for 80

minutes will not have the same stiffness reduction if it had be exposed

to a stress of 90 MSI the full I00 minutes. This implies that the time

rate of chanEe of stiffness must be a function of stress. The

difficulty with Eq. 9 is that it does not address or model the stiffness

reduction rate or creep rate nonlinearity, but only the maEnitude of the

stiffness. Both the creep rate and stiffness maEnitude are function of

stress level and must be modeled.

The same numerical experiment could be performed for the

temperature effects by looking at only the time and temperature terms of

Eq. 2. The results would be similar to the first numerical experiment

showin E the time term must be a direct function of the temperature

level. This implies that tF, or any other variable that is used to

model creep rate such as _ or a in the modified MFI equation, will not

be a constant but nonlinear function of both stress and temperature.

A computer simulation was also performed using Eq. I (METCAN) where

t was set at 24 hours and the effect of various temperature levels on
F

the stiffness was observed. Figure II shows the effect of 1200 F, 600 F

and 100 F on the stiffness of a material over time. It is important to

note that the failure time, i.e. when stiffness becomes zero, is nearly

the same for all temperatures, which is not realistic. The lower

temperature simulations should glve a much hiEher stiffness at 24 hours

then the other two temperatures. This difficulty can be over come by
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maklng one or more of the variables In the time term a function of

stress and temperature.

The nonllnear effect of stress and temperature on creep has been

Investlgated for both bulk metallic materlals [9,10] and for metal

matrix composite materials [5,6]. In both cases, the constant creep

rate or the secondary creep phase was modeled successfully by Dorn's

equation that uses a Arrhenlus relationship for the nonlinear

temperature effects and the Norton's eqautlon for the nonlinear stress

effects

_s = exp[--_-TQ] [--_c]n
(10)

where _ = steady state creep rate
S

T = Temperature

= Stress

R = universal gas constant, 8.314 joule/mole K°

Q = creep activation energy, a material constant

,a = material constants
C

The effect of temperature and stress on the primary and final creep

staEe is much harder to determine and is generally not modeled. This

study will only model the constant creep rate variable 'a' in the

modified MFI equation, Eq. 7, as function of temperature and stress, and

will use the form of Eq. I0. The other variables, t F, s and S should

also be function of temperature and stress but due to the numerical

difficulties and the lack of experimental data, they will remain
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constants at this time. Substituting Eq. 10 Into Eq. 7 gives

I m

E _ Tr
T

E T-T
o F 0

n s

].[_tSF- c tF

Sr _o tF to

,+ '13+ ,nt
LK'J L _J

(II)

Equation 10 allows the material to be nonlinear for the creep rate and

nonlinear for the stiffness magnitude. Figures 12 and 13 show

graphically the effect of temperature and stress for the time terms in

Eq. II.

It is recommended that the modified MFI equation be used to model

the time, temperature, and stress effects on the material response of

metal matrix composites. Since this equation has two levels of

nonlinearity, as compared to only one level for the original MFI

equation, the current algorithm used in METCAN might not be stable or

converge to the correct answer. Implementation of the modified MFI

equation and further investigation in the solution methodology of the

METCAN code is done in the following sections.
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IMPLEMENTATIONOF THE MODIFIED MFI EQUATION

Implementation of the modified MFI equation into the METCAN

computer code involved settlnE up three separate subroutines, one for

each of the three materials, fiber, matrix, and interface. Each

subroutine used the modified MFI equation, Eq. 7, to model the time,

stress, and temperature effects on the stiffness. These three routines,

called MECF, MECM, and MECD are used by MECHF, MECHM, and MECHD

subroutines, respectively, to calculate the stiffness The thermal

parameters, such as the coefficient of thermal expansion, or the

strength parameters were not effected by the program modifications and

these material properties continued to use the orlginal MFI equation for

modeling stress, temperature, and time effects.

The user must set the equation constants, such as t r, s, and 8,

within the subroutine for each material. Also, the user can modify the

nonlinear function that models the temperature and stress dependency on

the creep rate if required. After the variables and functions are set,

the code is compiled and then executed.

HETCAN Results Usin_ the Modified MFI Equation

The first set of computer simulation using the modified MFI

equation in ME/CAN were done uslnE SiC/Tit5 material in the METCAN

database. The load and temperature were increased linearly form N = 0
X

ib/in and T = 0 ° F to N = 250 Ib/In and T = 1000 ° F, respectively using
X
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10 steps. This was done in the first one second and then held constant

for 90 seconds. In Case I, both _ and a were equal to zero so that only

the decay function would be present (i.e. restore the original MFI

equation). The decay function variables were t = 100, and s = 0.5.
F

This served as a benchmark for the next two cases. In Case 2, _ and a

were set to constants, 1.0 and 0.01, respectively, to see the effect of

a constant Andrade's equation. And in case 3, the complete modified MFI

equation, Eq. II, was used, with _ = I, n = 5, v = 25,000 PSI, Q =
C

50,000 J/Mole. The strain results of all three cases are plotted in

Fig. 14 for a [0/0] laminate with a total thickness of 0.01 inch.

The first two cases predicted constantly increasing but stable

creep strains, as expected. However, the third case become unstable

after the total load was applied. There were no fiber or matrix

failures predicted by METCAN. The instabilities were assumed to be a

result of the highly nonlinear Andrade's equation that models stress and

temperature effects on the creep rate.

A second set of computer simulations were performed to help isolate

the stability problems. These simulations used a creep rate function of

the form

a = 0.002 E n 1 + 2000 (12)

for both the fibers and matrix, where v = 50,000 PSI.
c

This form

reduced the degree of nonlinearity of temperature, as compared to Eq.

10, which allowed the nonlinear stress effects to be better examined.
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Three different cases were simulated, n equal to I, 3 and 5. The

results are shown in Fig. 15. When is n = I and 3 the solution stays

stable but when n = 5, the solution becomes unstable. Furthermore, the

strains in each of the two plys, which are identical, vary form one to

another on the same time step. This indicates the numerical solution

process does not check strain compat Ibl I |ty when checking for

convergence. The strain should be physically possible as well as

converged before the next time step is taken.

An additional difficulty with the solution process is that when

METCAN redistributes the load {see SOLUTION METHODOLOGY FOR TIME

DEPENDENT MATERIALS) due to creep, the program does not iterate or check

for convergence even though the stresses have changed. It is

recommended that the METCAN solution process be modified to check strain

compatibility and stress equilibrium at each time step before and after

the load redistribution.

The numerical stability problems can be minimized by changing all

variables in the METCAN code to double prec£slon. When the previous

test case where n = 5 is run at double precision (or single precision on

a Cray computer, which is equivalent to double precision) the

instabilities disappear as shown in Fig. 16.

However, if the matrix and fiber materials have different creep

rate functions, which is generally the case, the stability difficulties

return, regardless of double or single precision. For example, let the

creep rate function be
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= O. 002 cr
ar ibet 50,000

I I:o"

amatrix = 0.02 30,000

T ] (12a)1 + 200------_

[ T ] (12b)1 + 2000

for a SiC/Ti15, [0/90] laminate. With a moderate load of only N = 250
x

ib/in the prediction become unstable after loading and diverge, as shown

in Fig. 17. Instabilities, therefore are not only a function of

computer precision but also degree of nonlinearity and laminate layup.

The following sect ion will look more closely at the underlying

assumption in the solution process used in HE'rCAN and examines other

solution methods in an effort to solve the stability difficulties.

One Dimensional Test Case

A simple two layer, one dimensional test case can be use to examine

the solution method of METCAN and understand the numerical stability

problems. Currently, ME'FCAN uses successive substitution method to

determine the stresses in a MMC composite. At each time step, the

stiffness is determined from the nonlinear MFI equation and then the

stress is calculated. This new stress is then substituted back into the

MFI equation to determine a new stiffness and finally a new stress.

This cycle continues until the stresses or composite strains converge.

This successive substitution method will experience difficulties for

moderately to severely nonlinear equation [11,12] and will only converge

for a system of equations that are positive definite.
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By looking at a simple one dlmenslonal case, the solution method

can be isolated from the complexities of the a highly nonlinear two

dimensional laminate composite. The one dimensional model consists of

two layers, both of which are viscoelastic. The stiffness in both

layers are modeled by the following equation

1
(13 )w

El I + at

where I is the layer number, t is time and 'a' is a stress nonlinear

function (temperature is not included for simplicity). The two layers

are in series, as shown in Fig. 18, and are required to have identical

strain at all times, similar to lamina layers in laminated composites.

layer- 1

El- 1 + alt I

cr=1 ( ) _ =1
0 O

I

Ez- 1 + a2t _2

layer 2

Fig. 18. One Dimensional Two Layer Material.

The 'a' function for the two layers for the particular case to be

examined are
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a I = 0.002 (14a)

0. 2 1 3

a 2 = 0.02 _j (14b)

where _I and _2 are the stresses In layer their respective layers.

This one dimensional problem was solved using the HETCAN algorithm

o£ successive substitution with a time step o£ 2 and 1. The solution

diverges when time is equal to 6 for both time step sizes, as shown in

Fig. 19 and 20. The problem was solved using 17 significant places

(slightly better than double precision) to greatly minimize any posslble

numerical Induced errors. The same example was then solved using the

Newton-Raphson Hethod [13] to identify t£ the solutlon method or the

problem formulation was causing the diverging solution. The time step

size was 1 for the Newton-Raphson method. The results shown in Fig 21

converge for all solutions steps, and the number o£ Iterations needed

for convergence are only two or three, which is substantially less than

for the simple substitution method. Furthermore, Ne_con-Raphson Hethod

will converge for a nonlinear set o£ equations even t£ they are not

positive deflnlte.

To help ellmlnate numerlcal stablllty problems, and for faster

convergence, the Newton-Raphson solutlon method should be used instead

o£ the successive substltutlon method currently used in HETCAN.

Implementatlon o£ a Newton-Raphson method wlll Involve reformulatlng

large parts of the current METCAN code, but the flnal code will be more

efflclent and more robust.
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CHARACTERIZATION OF THE BASIC MATERIAL PROPERTIES

Until now, all discussion has been on the validity of MFI equation

from an analytical view point. The MFI equation must also be compared

to actual material response tests for the fiber, matrix and interface to

verify that this equation can adequately model those material.

One possible method to check the MFI equation is to test a bulk

metallic material, such as aluminum or titanium, in uniaxiaI tests.

Uniaxial tests are relatively easy to perform and allow the temperature,

time, and stress parameters to be controlled and measured accurately.

Through these uniaxial tests each of the material constants can be

obtained through a curve fitting process. Statistical methods should

also be used to insure the fitting process is within acceptable limits.

In this manner, one dimension tests can be accomplished and the results

checked in the MFI equation model for stiffness.

The testing method described above assumes two important conditions

that may not be true. First, material properties obtained from uniaxia]

tests are assumed to accurately represent in-situ properties of the

fiber, matrix and interface. The material in-situ can experience

geometry, boundary constraints, and chemical interaction effects that

might not be detected with uniaxial tests on bulk material. There Is

evidence in the literature [5,6] that the bulk stiffness property (as a

function of stress, temperature, and time) of the fiber and matrix can

be used to predict the stiffness properties of a undirectional lamina.
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If the In-situ material properties were radlcally different than the

bulk properties, then such a prediction of the ply properties would not

have been possible.

The second assumption is that the material can be obtained in bulk.

For the interface material this is not be possible and thus would

prevents uniaxial testing. Furthermore, some material properties miEht

not be obtainable, such as shear and radial stiffness of the fibers due

to the limitation of current testinE procedures.

These two conditions present a serious problem. The current MFI

equation requires the use of only in-situ properties, but they are

impossible to obtain if uniaxial tests can not be performed on the

material in bulk. Furthermore, even if uniaxial tests are assumed to be

accurate tests for in-situ properties, some tests are still not

possible, such radial strenEth, or tests on the interface material.

Theoretically, all material properties for the fiber, matrix and can be

found by testinE only unidirectional plys and then backinE out the

properties. This is not experimentally feasible due to the large number

of material constants (I0 for each material and direction, 3 materials,

4 directions-orthotropic, givinE 120 total constants for the modified

MFI equation) that must be backed out. It is very difflcult to back out

3 or 4 variables and still satisfy acceptable statistical confidence

levels. The number of tests required for 120 variables would be on the

order of millions, and a large number of these would be creep tests

lasting days or even months. For the complete MFI equation with stress
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and temperature rates effects, and cyclic loading effects, the

complexity becomes unimaginable.

Since all material properties can not be obtained at the micro

level, i.e. matrix, fiber, interface, it is proposed that the testing be

done at the unidirectional lamina or macro level. This will greatly

reduce the number of experimental tests needed to characterize the metal

matrix material. Furthermore, because a lamina is a bulk material all

tests can be performed. This will also eliminate one level of

uncertainty in the design process.

The ultimate goal of characterizing a material at the micro or

macro level is to give the design engineer the information needed to

design and construct a usable product. If a material is characterized

at the micro level, then the engineer must first predict the lamina

properties, then predict laminate properties, and finally the product.

This entails three levels of prediction which is currently not accepted

as prudent engineering practice. One level of prediction is common and

necessary in every engineering discipline. Buildings are design with a

macro level understanding of steel and concrete. The design engineer of

a building does not use the strength allowable of rocks, cement, and

sand to predict the strength of concrete and then use these calculated

concrete values to design a building.

An understanding of the micro level is very important to the

material scientist or engineer of new materials to improve properties of

materials. But once a new material is proposed, a comprehensive test

program is needed to provide macro level design allowables for use in
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designing the final product. Even for the well understood elastic

properties of polymer based composites only macro material properties

are used in the design of products such as rocket motor cases, tennis

rackets or control surfaces of aircraft.

It is recommended that the computer simulation program for metal

matrix composites, METCAN, use lamina material properties for designing

laminates and final products (in conjunction with a finite element

code).
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SOLUTION METHODOLOGY FOR TIME DEPENDENT MATERIALS

Unlike elastic material response, tlme-dependent response {also

known as creep or viscoelasticity) depends on the overall stress and

strain history. Because of this, numerical solution methods must store

all previous stress and creep strains for use in calculatlng future

stress and strain.

One of the simplest examples to illustrate this hereditsx-y nature

of creep is a simple linear spring and dzshpot in series, commonly

referred to as a Maxwell element. A typical Maxwell element is shown in

Fig. 22. If the spring stiffness is E and the dashpot strain rate

coefficient is _ then

Cr O"
- and c - (15)

s E d

where _ is the total applied load (same in both the spring and dashpot),

spring and c is the strain rate in the dashpot.is the strain of the
s d

Since the total strain of the system, c, is the sum of c and c it can
s d

be shown that

which describes the time-dependent response of the Maxwell element.

Solving Eq. 16 for a constant load, v , gives
o
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[I t]c=O-o

with boundary condition, c _ at t = 0

(17)

Thus for a Maxwell element under constant load, the creep strain

increases linearly. This response is as shown in Fig. 22, where

E = _ = I, for two different constant loads, _ and _ (=2_).
o I o

Now suppose that the Maxwell element is loaded at the lower stress,

, until t and then increased to _ . If the hereditary nature of the
o 1 1

element is ignored, then only the current stiffness of the element,

E = 1/(l+t), would be needed to calculate the current total strain. The

total strain after t would then be c = v (1+t) which is equivalent to
I I

the response of the element under the higher load for the entire time.

This scenario is shown in Fig. 22 as the non-hereditary strain curve.

This is not physically possible since a viscoelastic material that

experiences a lower stress as well as a higher stress must have a lower

total strain then if the higher load was held constant for the same

total time (assuming the higher load in both cases were the same).

Furthermore, the non-hereditary strain path in this example requires the

instantaneous stiffness at t to be less than at t Instantaneous
1 o"

stiffness should not change as a result of creep.

A more realistic approach is to account for the creep strain caused

by each of the stress levels and then add the individual effects

together as required by linear and nonlinear viscoelastic theory [14].

Using this concept, the total strain for t _ t in the above example
I
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would be the sum of the creep strain due to c for the total time rand
0

the creep strain due to Ac (=c,-c) for the time after t . This can beo 1

written in equation form as

[It] [itt]_: = (r + + AC + 1
o -V- (18)

In terms of the compliance function S, Eq. 18 is simply

e = c S(t) + Ac S(t-t ) (19)
o I

This Is also plotted in Fig. 22 and gives a realistic total strain for

the Maxwell element after the second, higher load, c is applied. This
2

method is commonly called 'strain-hardening'. Also the elastic strains

at both t and t are the same, and thus the instantaneous stiffness did
o 1

not chznge as theory requires. Equation 19 can be generalized for an

infinite number of stress steps as

n

= c ° S(t) + Z AcIS(t-tl) (20)
i=1

= O" - C .
where n is equal to the total number of load steps and Ac i ! I-1

For a continuous changing load condition, Eq. 20 can be written in

Integral form as

t

c = Co S(t) + _ S(t-T) dc (21)
o

or in the more common form
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t d_= c S(t) + S(t-T) _ dT0

O

(22)

Equation 22 is referred to as the hereditary integral and is a type of

integral equation.

METCAN and the Hereditary Effect of Stress History

Currently METCAN does not separate the creep strain and total

strain, nor does it use the stress and stain history or the hereditary

integral to calculate the current stress and strain state. Instead

ME-[CAN uses the Multi-Factor Interaction (MFI) to model the chanEe in

stiffness, E, due to various effects [2,4] at each point in time,

independent of previous history. This MFI equation for only

temperature, stress and time is

E[TT]nE T - T oo F
]m[_ttsS F- _ t F

S F _ t - t0 F o

(23)

The solution process in _'TCAN will iterate at each time step until

the laminate strains converge usinE the assumption that a chanEinE

instantaneous stiffness correctly models creep strains. The

instantaneous stiffness should not vary with time, and the creep strains

should be kept separate from the elastic strains.

FiEures 23, 24 and 25 show the predicted strain results usinE

METCAN for [0/0], [45/-45] and [90/0] laminates made from SiC/Til5

subjected to constant stress. Each laminate had three different ]oadinE
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patterns; Case 1: N = 1, Case 2: N = 2, _tnd Case 3: N : I until
x x x

t = 10 hours and then increased to N = 2. The total strain in the load
X

direction (xx-directlon) of the la_inste is shown in the figures. Ali

three ]a_uinates show the total strain for case 3 tyl_e loading equal to

the case 2 type loading after 10 hours. As discussed prevlously, this

is a result of not using the stress history when calculatinE the current

total strain. One of the main concepts of viscoelasticity is that the

Instantaneous stiffness will not vary directly with time (possibly

indirectly through damage or aging) which is violated with HETCAN and

thus cages 2 end 3 are equal after 10 hours. Similar problems wil]

clevelop if the temperature _ varied instead of the stress parameter.

The inadequacies of the non-hereditary solution method in METCAN is

also evident when a constant load is applled to a composite for a length

of tlme and then completely removed. The METCAN predicts that the

strain wili return to zero after the load is removed (Fig. 26) which is

contrary to the known response of MMC [15]. General ly, the strain for

MMC, which has under gone creep, will decrease an amount equal to the

Initial instantaneous response when unloaded and then slightly recover a

small portion of the creep strain over an extended period of time.

However, the total strain will not be totally recovered and there will

be a permanent deformation. The differences between observed creep

str-ain behavior and METCAN predicted results can be partially accounted

for by METCAN's neElecting the hereditary effects of past stress states.

To confirm that MMC do behave in the classlcal vlscoelastic manner,

an incremental ]oadinE test wa_ performed on an unidirectional la_ninate
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composite by D. Bartolotta [18] (the specimen was supplied by D.

Petrasek and H. Gray of the Advanced Metalllcs Branch, NASA Lewis

Research Center). The test specimen, Tungsteru'Kanthal (FeCrAIY) [0] 4,

was loaded to 45 KSI, held for 100 minutes, increased to 80 KSI, held

I00 minutes, increased to 75 KSI, held 100 minutes, and then unload to 0

KSI. The results are shown on Flg. 27. The two main conclusion from

the experiment are, first, the Instantaneous stiffness is nearly the

same for all loading increments, including the unloading, and second,

the strain does not return to zero after unloading. Currently neither

of these characteristics can be predicted by METCAN. Methods to

correctly predict creep strain are presented in the following sections.

Numerical Methods to Calculate Creep for Stable Materials

One method to calculate the correct total strain is to use the

hereditary integral directly. Equation 20 gives the integral in

summation form which is most useful for numerical methods. The total

strain at any point in time is equal to each stress increment multiplied

by the compliance for the length of time the load was applied. Written

out for a linear material, this becomes

¢(t) = SCt) + (_I- _ ) SCt - t ) + .....o o I

+ (cri- _1-1 ) S(t - t l) (24)

This represents an exact solution for a discrete load history of

37



vft) = _ H(t) + for 1- _o] Hft - t ) + .....o 1

+ (cr l- Cl_l ) H(t - t l) (25)

where H(t} is the heavyside function and t is the final time. In order

to evaluate Eq. 24, the stress and the compliance function, S, must be

known at all previous time steps. Furthermore, each new time requires

the recalculation of the total strain from t = 0 to the current time.
0

This means, increasing the number of time steps will geometrically

increases the solution time. This effectively places a upper limit on

the total number of time steps that can be taken.

Equation 24 modified to incorporate nonlinear effects, such as

stress. Findley and Khosla [17] have proposed use of a modified

superpositlon principle of the form

oCt) = c SCt,c )
O 0

+ c S(t - t ,_ ) - _ S(t - t ,_ )
1 1 1 o 1 o

+ cl S(t - tl,cl ) - Cl-1 S(t - tt,cl_l) (25)

They successfully used this equation on isotropic materials. Also,

Dillard, et al [18], and Gramoll, et al [7], have successfully used this

equation on orthotropic materials such as graphite/epoxy and

Kevlar/epoxy.

A natural extension to Eq. 25 is the inclusion of nonlinear

temperature effects which gives
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_(t) = c SCt,c ,T )
0 0 0

+ _I S(t - tl,C1,T 1) - co S(t - tl 'Co'To )

ooo.

+ _, S(t - ti,ci,T *) - cri_1 S(t - ti,ci_1,Ti_ I) (26)

In order to correctly predict creep strain in METCAN, Eq 26 could be

incorporated into the computer code. The nonlinear effects of

temperature and stress are accounted for and the hereditary nature of

viscoelastic material is not ignored. However, there is one limitation

to this method, the material must not have an increasing strain rate.

Such a material is considered unstable and does not have a fading

memory. The basic decay function in the MFI equation, Eq. 2 or 7, does

result in an increasing creep rate. The following section address such

materials and proposes a modification to deal with this difficulty.

Numerical Methods to Calculate Creep for Unstable Materials

One of the main conclusions in the previous section was that METCAN

should use past stress history in calculating current creep strains as

prescribed by classical viscoelastic theory. Numerical methods were

outlined for stable materials but they could not be applied to unstable

material wlth increasing creep rates. This section will present a new

numerical solution method for unstable materials.

The three parameter spring and dashpot model (maxwell element in

pay-allel with a single spring) that was previously introduced, is a
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stable material since the creep rate always decreases for a constant

load. However, the MFI equation produces an ever increasing creep rate

under a constant load, which is considered an unstable material (FIg.

3). If Eq 26 Is used to evaluate the hereditary integral for an

unstable material the results could oscillate or diverge rapidly from

the correct answer.

A good example of the difficulties encountered in trying to use

Eq. 26 to evaluate the hereditary Integral for unstable materials is a

two layer one dimension model, with one material elastic and the other

following the decay function, E = (1-t/tv)s. The solution for t v = 100

and s = I, diverges quickly from the approximate solution, as shown in

Fig. 28. The total strain can not physically exceed I, yet the standard

hereditary solution method based on Eq. 24 exceeded this and eventually

blows up.

A second example illustrating the limitations of the hereditary

integral for unstable materials is once again a two layer, one

dimensional material. The first material is elastic, E = I, and the
1

second material follows a time dependent stlffness relatlonship of

E = I/(I+0.01tn). This form for E is convenient since both an
2 2

unstable and stable material can be obtained by simply changing the

exponent, n. If n = I then the basic Maxwell element is recovered and

the strain rate is constant for a constant load. If n < 1 the strain

rate will be constantly decreasing and for n > I it will be constantly

increasing which is an unstable material.
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The total strain for this two layer material was solved using Eq.

26 for various n values. If n is larger than one, the total strain

exceeds the physical strain limit of I and oscillates about the correct

answer, as shown in Fig. 28. For n equal to or less than one, the

correct answer is obtained. The basic difficulty in using Eq. 2S for

unstable materials is that the hereditary integral assumes the material

has a fading memory, which is not the case for unstable materials.

If the MFI equation uses the decay function for time, (l-t/tF)6 '

then a new numerical solution process must be developed to solve for the

total strain. One possible method, to be called the Additive Creep

Method (ACM), is to calculate the creep strain, Acc for each time
!

segment, Atl ' using z simple Euler forward approximation. The creep

strain for each segment can then be added together to give the total

creep strain. This method neglects past stress history since the

material is unstable, but if small enough steps are used the results

will converge to the correct answer for the decay function. This method

still separates the elastic and creep strains, which becomes important

for load shifting, as will be explained in the following section.

Furthermore, the instantaneous stiffness does not change with time so

the elastic strains due to changing loads (especially unloading) can be

computed without including creep strains.

The Additive Creep Method (ACM), can be written in equation form

for time and stress as
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cCt)= _(t
) *S(_rn_l ,0) + cr(to )" [S(_o' t- t)-1 o S (°'o ' O) 1

+ c(tl)'[g(rl,t 2- t 1) - S(c1,0) ]

[S(_ i - , ]+ c(tl)" ,ti÷ I t t) - S(c i O)

+ _(tn_l )'[S(Cn-1't -tn n-l)- S(_rn_1,0)] (27)

where S is the compliance function and n is the total number of time

steps. Including temperature, T, and rewriting Eq. 27 in summation form

gives

c(t) = (r(tn_1)'S(Cn_1,Tn_1,0)

n-1

+ _cr(ti )"[S(cri,TI,tI+1- ti ) - S(cri,Ti ,0)1 (28)

i=O

The ACM procedure to calculate creep strains was applied to the

previous two layer example, with one layer elastic and the other

described by the original MFI equation wlth only the decay function.

The numerical results in Fig. 30 show converging solutions for

decreasing time steps for two different exponent values. The solution

is stable and does not diverge or blow up but caution does need to be

taken in choosing a small enough time step. Furthermore, it should be

noted that this solution method is not robust and should not be applied

to other unstable material models. Figure 31 shows the difficulties in
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using the ACM procedure for a two layer material with one layer

described by E = 1/(l+0.01t2). The solution is highly dependent on the
2

step size and does not converge to a single answer with decreasing step

size.

In summary, the new Additive Creep Method can be used to calculate

the creep in a metal matrix composite when using the MFI equation for a

changing stress and temperature. This method also eliminates the need

to re-evaluate the complete hereditary integral at each new time step.

Internal Load ShiftinK

In a composite structure where two different materials are bound

together there will material property mismatching. This is especially

evident for unidirectional composites where the long fibers will

generally have a different thermal expansion coefficient then the matrix

material. This mismatch will cause stresses to develop without any

externally applied load. Similar to thermal expansion, viscoelastic

properties are generally different for each component in a composite

structure. Furthermore, each direction (transverse, fiber and shear

direction), can have different viscoelastic properties then the

adjoining layer, especially if the layers are rotated.

This mismatch in viscoelastic properties will cause load shifting

from the more compliant components of the composite, such as matrix,

which relax quickly, to the stiffer components, such as the fibers. The

overall applied load may not change, but internally there can be large

changes in stress, affecting both micro level stresses and ply stresses.
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The concept of load shifting cam best be represented by a simple

example of a hypothetical one dimensional, two layer material. One

layer is composed of a linear elastic material modeled by a spring with

a stiffness of E . The second materlal Is a linear viscoelastic
I

material modeled by a Maxwell element, where the spring constant is E
2

and the dashpot constant is _. This two layer material is shown in Fig.

32 alone with the exact solutlon for the strain and stress response to a

constant load. Layer 2, which is viscoelastic, will lose load as it

creeps, and the elastic layer I, will pick up this load loss.

Eventually, all the load will be carried by the layer 1.

The results shown in Fig. 32 for the three parzmeter solid is one

of the few closed form solution available in viscoelasticity that model

a two layer material. The solution can be derived by first expressing

the Maxwell element that models layer 2, as a differential equation

which was was done earlier in Eq. IS. Using E and for E in Eq. 18 and
2

rearrazxginE gives

o" 0-
_ 2 2

¢2 E + -- (29)
2

where c 2 and v 2 arethe strain and stress, respectively, in layer 2.

The strain equilibrium requires c = c = ¢ or c = ¢ = c and the
1 2 I 2

.+ _ or v = & + where _ and m
stress equilibrium requires _ = _1 2 1 '

are the overall strain and stress. Substituting these equilibrium

equations into Eq. 29 gives
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O'--& 0"--_

c - 1 + 1 (30)
E

2

For layer 1, the constitutive equation is

= eE or & = _E (31)
1 1 1 1

Substituting Eq. 31 into Eq. 30 and rearranging gives

(E2 + E1)_c + EIE2c = _o" + E2o"
(30)

If the overall stress is constant, _ = _ , then & = 0 and Eq. 32 becomes
0

a first order, ordinary differential equation

(E 2 + E1 )_ + EtE2c = E2_ (33)

Solving Eq. 33 gives

-t/b
(re

0

E+E
1 2

[,_e"J (34)

where b =
(E2+ EI)

EE
I 2

with boundary condition o at t =0
c - E+E

! 2
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This closed form solution is exact if the load, _ , is constant. This
0

solution can be used to verify the solution techniques used in any

numerical method.

The solution technique currently used in METCAN calculates the

stiffness at each point in time using the MFI equation and then uses

that stiffness to determine the overall strain by applying stress and

strain equilibrium. After the total strain is obtained, each individual

layer stress is back calculated since their current stiffness is known.

It should be noted that all discussions in this report about METCAN

assume the "redistribution" option is set to true. If false, there will

be no creep strain for a constant load problem since the increment of

load will be zero. However, currently there is no convergence test in

METCAN after the loads have been redistributed. Further investigation

of the convergence criterion of the redistribution option should be

done.

There are two ways to compare the METCAN code and its solution

technique to the exact solution of the three parameter example developed

earlier. The first is to use the actual program but use new fictitious

materials that respond like a spring and Maxwell element, and set all

Poisson's ratios to zero to decouple the transverse direction from the

fiber directions. The three parameter model can be simulated by METCAN

if the fiber material is assumed to be elastic and the matrix material

to be viscoelastic. By setting all exponents for the fiber material

model in the MFI equation to be zero, the fiber will response

elastically. Likewise, when all exponents, except for the time, for the
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matrix material are zero, the matrix will response vlscoelastlcally. To

decouple the fiber direction and transverse direction in a standard two

dlmenslonal composite, all Polsson's ratios were also set to zero. In

this manner, METCANwas able to simulate a one-dlmenslonal, two layer,

viscoelastic material.

The second method is to write a simple program using the METCAN

solution algorithm and apply it to the current example. The first few

steps in the METCAN solution process will be outlined below. The

numerical example is based on the two layer, one dimensional problem

= E = _ = I and _ = I00. The stiffnessintroduced previously with E I 2 o

EIfunction of layers 1 and 2 are (t) = I and E2(t) = I/(1+.Olt),

respectively, as shown in Fig. 33.

layer 1

E : 1

= 1 ( ) 0"= 1
o o

2 I
E =

(l+.Olt) %
layer 2

FiE. 33. Simplified Two Layer, One Dimensional Laminate.

For the first step, t = O, the stiffness of each layer is I. The total

stiffness, E, will then be 2. For a constant load, _ , of I, the total
o
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strain will be 0.5 which is correct since no creep strain has taken

place at t = O. The next 5 steps are detailed in Table I below.

t E 1 E 2 E =E2+E 2 c=co/E c1=eE1 c2=eE2

0 1 1.0000 2.0000 0.5000 0.5000 0.5000

I 1 0.9901 1.9901 0.5024 0.5025 0.4975

2 1 0.9804 1.9804 0.5049 0.5050 0.4950

3 1 0.9709 1.9709 0.5074 0.5074 0.4926

4 1 0.9615 1.9615 0.5098 0.5098 0.4902

5 1 0.9524 1.9524 0.5122 0.5122 0.4878

Table I. METCAN Solutlon of a Spring and Maxwell
Element in Parallel.

The total straln calculated from both the actual METCAN code and

the METCAN solutlon method Is shown In Fig. 34 along with the exact

solutlon. Both the METCAN solution method and the METCAN program

predictlons dlverge from the closed form solutlon as time increases. It

is important to note that only the numerical method is verified and not

the correctness of the materlal model, l.e. sprlngs and dashpots, or the

MFI equation. The sprlng and Maxwell models are used only because there

is a closed form solution available. Furthermore, If a numerlcal can

not converge to the correct answer for a one dlmenslonal case, then It

w111 not converge for a more complex two dlmenslonal case.

An alternate method to numerically simulate load shifting is to

treat creep strain as one would thermal strains. Just llke thermal
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strains and stress are not determined by a cham_e in the instantaneous

modulus, creep strain should also be calculated separate from elastic

fk
strains. Similar to free thermal strain, the free creep strain, el, of

each ply, k, is first calculated at each time increment, i. From these

free creep strains an equivalent creep load CN (similar to equivalent
, !

thermal load) can be derived. This equivalent load is then applied to

the total laminate usinE the instantaneous elastic stiffness. The

resultinE Elobal creep strain, C¢ is the actual creep strain for the
i

laminate and each ply, c k For the current problem, cc = cck since
1" ! t'

there is only one dimension, and both layers must have the same strain.

This process requires additional work in calculatin E the free creep

strain but the results more closely represent the actual load shiftinE.

This method will be referred to as the Free Creep Strain (FCS) method in

this report.

The FCS method was used to solve the same three parameter example

previous investiEated with METCAN. A flowchart illustratinE the

numerical solution method is Eiven in FiE. 35. The results for the

first few steps are shown in Table 2. The total strain for time steps

up to t = 99 is plotted in FiE. 34 alone with the exact solution and the

METCAN results. The FCS solution method aErees well with the closed

form solution for the time step, At=]. This solution also incorporates

the hereditary inteEral to evaluate the free creep strain in each ply as

discussed in the previous section.
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t eel eel eE ec tc 1 2 f 1 f 2 c ¢c E M
! i ! i i i ! i i i i

0 1 1 2 .5 5000 .5000 .5000

1 0.0 .0050 .0050 .0025

1 1 2 .5 5025 .5025 .4975

2 0.0 .0099 .0099 .0050

1 1 2 .5 5050 .5050 .4950

3 0.0 .0149 .0149 .0075

1 1 2 .5 5075 .5075 .4925

4 0.0 .0198 .0198 .0099
1 1 2 .5 5099 .5099 .4901

5

1 1 2 .5
0.0 .0248 .0248 .0124

5124 .5124 .4876

Table 2. FCS Solution of a Spring and Maxwell Element in Parallel.

It is recommended that the solution technique in METCAN be modified

so that the load shifting between the composite components can be

properly calculated. This will help METCAN converge to the correct

total strain. One possible method is the FCS method which converges

quickly to the correct strain. Furthermore, any method used to account

for load shifting should also incorporate the hereditary integral to

calculate the creep strain.
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CONCLUSIONS AND KECO_ENDATIONS

This study examined the METCAN program code for use in simulating

time dependent effects in metal matrix composites, and developed new

numerical methods for solving creep strains, and proposed modification

to the MFI equation to correctly model all phases of creep. Both the

findings and modifications Implemented are summarized below, along

recommendations for further work.

I) The MFI equation, as currently implemented in METCAN with the decay

function for time, can not model the primary and secondary creep stages.

A new time term, derived from the Andrade's creep law, was introduced to

model all three phases of creep when used in conjunction with the

original decay function.

2) The creep rate is not a direct function of stress and temperature in

the original MFI equation. The constant creep rate, modeled in the new

time term, was made a function of both stress and temperature using the

standard Arrhenius equation.

3) The modified MFI equation with stress and temperature dependency was

implemented into METCAN. The results indicate a sensitivity to the

degree of nonlinearity and the laminate layup. Severely nonlinear

models and cross-ply laminates did not converge even at double

precision. Convergence problems also developed when the solution method

in METCAN, successive substitution, was used on a simple two layer, one

dimensional hypothetical composite with moderately nonlinear material

properties. When a Newton-Raphson solution method was used, their were

no convergence difficulties, and converge was very rapid. It is
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recommendedthat the Newton-Raphsonmethod be implemented into METCANas
the main solution method.

4) The use of in-situ material properties for the fiber, matrix and

interface was determined impractical because of the current inability of

experimental methods to determine such properties. Furthermore. the

number of material properties that must be determined are too numerous

to be effectively obtained and still stay within accepted statistical

bounds. It Is recommended that the lamina level be characterized which

will reduce the number of material varlables and alleviate the need to

find in-situ properties. An alternative method would be to use bulk

material properties for the fiber, matrix and interface, and relate

those properties to the in-situ properties.

5) The hereditary effects of previous stress on the current strain are

not taken In to account in the current solution method in METCAN.

Experimental results on unidirectional composites do not agree with

METCAN predictions for time dependent response. Basic viscoelastic

principles were reviewed and two new numerical procedures were

introduced for use on stable and unstable materials. An unstable

material is material that has an increasing creep rate with time. These

numerical techniques have not been implemented into ME CAN but it is

recommend to be done In the future.

6) The current method of shifting load from the more compliant matrix

to the stiffer fibers due to the tlme-dependency of the materials in

METCAN wlll cause the total strain to deviate from the true total

strain. This was demonstrated by comparing METCAN results with the

closed form solution of a three parameter dashpot and spring model. A

new solution technique was introduced as a possible method to correctly

model the load shifting and applied successful to the three parameter

model. This numerical method was not implemented Into METCAN due to the

tlme constraints. It is recommended that the method be used In METCAN

in the future.
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I Initialize Time & Counter

I i = O, t I = O, dt = 1

l

Iinitialize Creep Strain

f k
= O, C = 0CCl 1

l
Ply Elastic Stiffness

e 1
E = 1

i

e 2 1

El (l+.Olt) = 1

l
Laminate Elastic Stiffness

e e 1 e 2
E= E ÷ E

l i l

I L

l
Elastic Strain

e

CI= °/e E
1

l
Total Strain

T e c
C= C ÷ E

i i 1

1
Ply Stresses

1 e 1 T f 1= E ( - c )
1 t i 1

2 eE2(T C_ f 2Cv = - _ )
1 i i i

l
Store and Print stress

and Strain for t
l

No

I.t°p I

Total Laminate Creep Strn

C

,/= 1
CCl E

i-1

l
Equivalent Creep Load

c e 1 f 1

N I I-I I

e2f2
+ E C

i-I I

l
Calc Free Creep Strains

using Hereditary Integer

fck =I "k_kctl)-o sk(o)]

i -I k_ k ) IS k C t-t J }+j_o(_l I-I
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Fig. 35 Flowchart of FCS Method for Linear Three Parameters Example.
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